

Z' bosons from E₆: collider and electroweak constraints

Jens Erler (IF-UNAM)

DIS 2011

Newport News Marriott at City Center Newport News, VA, USA April 13, 2011

1

- why care about Z' bosons?
- Z' bosons from E₆

- why care about Z' bosons?
- Z' bosons from E₆
- Z' constraints from electroweak precision data

- why care about Z' bosons?
- Z' bosons from E₆
- Z' constraints from electroweak precision data
- Z' physics at hadron colliders

- why care about Z' bosons?
- Z' bosons from E₆
- Z' constraints from electroweak precision data
- Z' physics at hadron colliders
- towards an integrated Z' analysis

- why care about Z' bosons?
- Z' bosons from E₆
- Z' constraints from electroweak precision data
- Z' physics at hadron colliders
- towards an integrated Z' analysis
- based on work in collaboration with
 Paul Langacker, Shoaib Munir and Eduardo Rojas

top-down: strings and GUTs

- top-down: strings and GUTs
- **bottom-up:** models of dynamical symmetry breaking, SUSY, large/warped extra dimensions, little Higgs, ... on life support $\rightarrow U(1)$'s as paramedics $\Rightarrow M_{Z'} = O(\text{TeV})$

- top-down: strings and GUTs
- **■** bottom-up: models of dynamical symmetry breaking, SUSY, large/warped extra dimensions, little Higgs, ... on life support $\rightarrow U(1)'s$ as paramedics $\Rightarrow M_{Z'} = O(\text{TeV})$
- discovery: s-channel resonances at colliders, interference with γ/Z at low energies

- top-down: strings and GUTs
- **bottom-up:** models of dynamical symmetry breaking, SUSY, large/warped extra dimensions, little Higgs, ... on life support $\rightarrow U(1)$'s as paramedics $\Rightarrow M_{Z'} = O(\text{TeV})$
- discovery: s-channel resonances at colliders, interference with γ/Z at low energies
- discrimination: angular distribution can indicate spin

- top-down: strings and GUTs
- **■** bottom-up: models of dynamical symmetry breaking, SUSY, large/warped extra dimensions, little Higgs, ... on life support $\rightarrow U(1)'s$ as paramedics $\Rightarrow M_{Z'} = O(\text{TeV})$
- discovery: s-channel resonances at colliders, interference with γ/Z at low energies
- discrimination: angular distribution can indicate spin
- diagnostics: charges can hint at underlying principles

 $Z' = \cos\alpha \cos\beta Z_X + \sin\alpha \cos\beta Z_Y + \sin\beta Z_{\Psi}$ $\sim c_1 Z_R + \sqrt{3} (c_2 Z_{R1} + c_3 Z_{L1})$

- $Z' = \cos\alpha \cos\beta Z_X + \sin\alpha \cos\beta Z_Y + \sin\beta Z_{\Psi}$ $\sim c_1 Z_R + \sqrt{3} (c_2 Z_{R1} + c_3 Z_{L1})$
- **x** kinetic mixing: $α ≠ 0 ∼ F^{μν} F'_{μν}$

- $Z' = \cos\alpha \cos\beta Z_X + \sin\alpha \cos\beta Z_Y + \sin\beta Z_{\Psi}$ $\sim c_1 Z_R + \sqrt{3} (c_2 Z_{R1} + c_3 Z_{L1})$
- **x** kinetic mixing: $α ≠ 0 ∼ F^{μν} F'_{μν}$
- \blacksquare E₆ → SO(10)×U(1)_Ψ → SU(5)×U(1)_X×U(1)_Ψ

- $Z' = \cos\alpha \cos\beta Z_X + \sin\alpha \cos\beta Z_Y + \sin\beta Z_{\psi}$ ~ $c_1 Z_R + \sqrt{3} (c_2 Z_{R1} + c_3 Z_{L1})$
- kinetic mixing: $\alpha \neq 0 \sim F^{\mu\nu} F'_{\mu\nu}$
- \blacksquare E₆ → SO(10)×U(1)_Ψ → SU(5)×U(1)_X×U(1)_Ψ
- * trinification: $E_6 \rightarrow SU(3)^3 \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{L1} \times SU(2)_{R} \times U(1)_{R1}$

- $Z' = \cos\alpha \cos\beta Z_X + \sin\alpha \cos\beta Z_Y + \sin\beta Z_{\Psi}$ $\sim c_1 Z_R + \sqrt{3} (c_2 Z_{R1} + c_3 Z_{L1})$
- kinetic mixing: $\alpha \neq 0 \sim F^{\mu\nu} F'_{\mu\nu}$
- \blacksquare E₆ → SO(10)×U(1)_Ψ → SU(5)×U(1)_X×U(1)_Ψ
- * trinification: $E_6 \rightarrow SU(3)^3 \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{L1} \times SU(2)_{R} \times U(1)_{R1}$
- classification in progress JE, E. Rojas, 2011

Z' charges in E₆ models

	ν		-2c ₂	–С з	V	-С1	+C2	+2c ₃
	e ⁻				e ⁺	+C ₁	+C2	+2c ₃
q	U			+C 3	u	-С ₁	-C ₂	
	d				d	+C1	-C2	
	N	-С1	+C2	–С з	D			-2c ₃
	E-				D		+2c ₂	
L	E+ N	+C1	+C 2	–С з	S		-2c ₂	+2c ₃

in SUSY when demanding JE, Nucl. Phys. B586, 73 (2000)

SM Yukawa couplings allowed

- SM Yukawa couplings allowed
- the U(1)' provides a solution to the u-problem

- SM Yukawa couplings allowed
- the U(1)' provides a solution to the u-problem
- chirality & SUSY protect all fields against large masses

- SM Yukawa couplings allowed
- the U(1)' provides a solution to the u-problem
- chirality & SUSY protect all fields against large masses
- gauge and gravitational anomaly cancellation

- SM Yukawa couplings allowed
- the U(1)' provides a solution to the u-problem
- chirality & SUSY protect all fields against large masses
- gauge and gravitational anomaly cancellation
- gauge coupling unification

- SM Yukawa couplings allowed
- the U(1)' provides a solution to the u-problem
- chirality & SUSY protect all fields against large masses
- gauge and gravitational anomaly cancellation
- gauge coupling unification
- \rightarrow the U(1)' forbids dimension 4 proton decay

E6 models & parity violation E158, MOLLER, Qweak, SOLID, APV

strongly constrain vector and axial-vector Z couplings

- strongly constrain vector and axial-vector Z couplings
- $\Rightarrow \theta_{ZZ'} \leq \mathcal{O}(10^{-2})$

- strongly constrain vector and axial-vector Z couplings
- $\Rightarrow \theta_{ZZ'} \leq \mathcal{O}(10^{-2})$
- \blacksquare $M_{Z'}$ bounds scale like $g'/M_{Z'}$

- strongly constrain vector and axial-vector Z couplings
- $\Rightarrow \theta_{ZZ'} \leq \mathcal{O}(10^{-2})$
- Mz' bounds scale like g'/Mz'
- simultaneously constrain U(1)' breaking Higgs sector

- strongly constrain vector and axial-vector Z couplings
- $\Rightarrow \theta_{ZZ'} \leq \mathcal{O}(10^{-2})$
- Mz' bounds scale like g'/Mz'
- \blacksquare simultaneously constrain $\bigcup (1)'$ breaking Higgs sector
- often raises preferred fit range of M_H relative to SM (cf. NMSSM) JE, P. Langacker, S. Munir, E. Rojas, JHEP 0908, 017 (2009)

Global electroweak fit

Z lineshape, heavy flavor, Z pole asymmetries, m_t, M_W, v-DIS, APV, polarized electron scattering

pp, pp: resonant production of e⁺e⁻, μ⁺μ⁻, bb, tt, dijets, associate production, FB-asymmetries

- pp, pp: resonant production of e+e-, μ+μ-, bb, tt, dijets, associate production, FB-asymmetries
- mild dependence of results on PDF set JE, P. Langacker, S. Munir, E. Rojas, arXiv: 1103.2659 [hep-ph]

- pp, pp: resonant production of e+e-, μ+μ-, bb, tt, dijets, associate production, FB-asymmetries
- mild dependence of results on PDF set JE, P. Langacker, S. Munir, E. Rojas, arXiv: 1103.2659 [hep-ph]
- mass dependent acceptance taken as Beta distribution

- pp, pp: resonant production of e+e-, μ+μ-, bb, tt, dijets, associate production, FB-asymmetries
- mild dependence of results on PDF set
 JE, P. Langacker, S. Munir, E. Rojas, arXiv: 1103.2659 [hep-ph]
- mass dependent acceptance taken as Beta distribution
- QED and QCD corrections sizable

- pp, pp: resonant production of e+e-, μ+μ-, bb, tt, dijets, associate production, FB-asymmetries
- mild dependence of results on PDF set JE, P. Langacker, S. Munir, E. Rojas, arXiv: 1103.2659 [hep-ph]
- mass dependent acceptance taken as Beta distribution
- QED and QCD corrections sizable
- systematic uncertainties currently neglegted

CDF style analysis

Good agreement with CDF model lines. Several additional models included.

E₆ inspired models

horizontal line: SO(10) (including left-right) models vertical line: no kinetic mixing; blue line: U(1)_{d-xu}

example LLR

Higgs boson search at the Tevatron

Bayesian style analysis

 $\Delta \chi^2 = -2 \ln p(data|s+b)/p(data|b) < 5.99$

Interference effects

 $Z_{u\text{-int}}^{+} \approx -76^{\circ}$, $\beta = 0$ (Z_{ψ}) maximizes constructive $\gamma Z'$ (destructive ZZ') interference for u-quarks

Comparative analysis of Z_X

Complementarity of electroweak precision data and di-lepton channel analyses.

towards an integrated Z' analysis

towards an integrated Z' analysis

 next step: move from collection of mass limits to integrated analysis (especially after hint/discovery)

towards an integrated Z' analysis

- next step: move from collection of mass limits to integrated analysis (especially after hint/discovery)
- $p_{posterior}(M_{Z'}, g', \theta_{ZZ'}, \alpha, \beta) = p_{prior} \times \mathcal{L}_{EWPD} \times \prod_{i} \mathcal{L}_{i}$

towards an integrated Z' analysis

- next step: move from collection of mass limits to integrated analysis (especially after hint/discovery)
- $p_{posterior}(M_{Z'}, g', \theta_{ZZ'}, \alpha, \beta) = p_{prior} \times \mathcal{L}_{EWPD} \times \prod_{i} \mathcal{L}_{i}$
- combine LEP1, SLC, LEP2, Tevatron, LHC, CEBAF, table top, ... to disentangle parameters (lot of work)

towards an integrated Z' analysis

- next step: move from collection of mass limits to integrated analysis (especially after hint/discovery)
- Pposterior(Mz', g', θ zz', α , β) = pprior × \mathcal{L} EWPD × \square i \mathcal{L} i
- combine LEP1, SLC, LEP2, Tevatron, LHC, CEBAF, table top, ... to disentangle parameters (lot of work)
- long-term project: suggests close collaboration between theorists (us) and experimentalists

a TeV scale Z' is a real possibility and its charges can give information on the underlying physics principles

- a TeV scale Z' is a real possibility and its charges can give information on the underlying physics principles
- E₆ model class arises top-down and bottom-up
 (at least, as far as the known fermions are concerned)

- a TeV scale Z' is a real possibility and its charges can give information on the underlying physics principles
- E₆ model class arises top-down and bottom-up

 (at least, as far as the known fermions are concerned)
- **EWPD:** give very tight constraints on $\theta_{ZZ'}$ and on $g'/M_{Z'}$

- a TeV scale Z' is a real possibility and its charges can give information on the underlying physics principles
- E₆ model class arises top-down and bottom-up

 (at least, as far as the known fermions are concerned)
- **EWPD:** give very tight constraints on $\theta_{ZZ'}$ and on $g'/M_{Z'}$
- hadron colliders: complicated constraints in g' vs. Mz'

- a TeV scale Z' is a real possibility and its charges can give information on the underlying physics principles
- E₆ model class arises top-down and bottom-up

 (at least, as far as the known fermions are concerned)
- **EWPD:** give very tight constraints on $\theta_{ZZ'}$ and on $g'/M_{Z'}$
- hadron colliders: complicated constraints in g' vs. Mz'
- closer collaboration between experimentalists and theorists warranted

Z' bosons from E₆: collider and electroweak constraints (Jens Erler)

 $\alpha = 0$: no kinetic mixing

 $\beta = 0: SO(10)$

current & future low energy constraints will exclude entire parameter space

this analysis: Bayesian style CDF analysis: frequentist EWPD: electroweak

